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I. Introduction

The previous paper [1l] in this series dealt with finite element
approximations based on the Kelvin Principle. The latter was shown to be
dual in a suitable sense to the classical Dirichlet Principle, and in many
respects the computational properties of these principles are complementary.
For example, when the classical Dirichlet Principle is used for Poisson's
equation A¢ = f, one directly approximates the scalar valued function ¢

*
with say linear finite elements. The resulting approximation ¢h satisfies

(1) lo-sll < cn?lo |
0 2

while there is a less accurate approximation to the gradient, i.e.,

(2) Ive-vo ll < cnll Vol
0 1

Conversely, if the Kelvin Principle is used and if our Grid Decomposition

Property [1] is satisfied then the approximation u, to u =V satisfies

Y
(3) Ju-ull < ch?fu]
| T T =~
while
(4) o -¢ll < cncliofl+ llull)
0 1 2

As we shall show in this paper the least squares approach is in essence
a mixture of the Dirichlet and Kelvin Principles. It is natural to use the
same spaces for both ¢ and u in least squares, and if say linear elements

are used, then least squares inherits the property from the Dirichlet Principle

*
Throughout this paper H'(Q) denotes the r-th order Sobolev space with
norm ﬁ . ”r (see [2]).




that the error in the scalar ¢ satisfies (1). On the other hand, least
squares inherits from the Kelvin Principle the property that (3) holds
if the Grid Decomposition Property is valid.

Least squares methods appear to be particularly applicable for in-

definite problems such as the Helmholtz equation
8 + wPo = £

arising in acoustics and elsewhere {3], [4]. This is especially true
since least squares techniques lead to algebraic problems with sparse
positive definite matrices. The Kelvin and Dirichlet Principles, on

the other hand, typically give indefinite matrix problems.

II. Formulation of Problem

To fix ideas we consider the following boundary value problem: given

a function f, we seek a suitably smooth ¢0 satisfying

1) Ad)o + qq‘JO = f in

(2) ¢O =0 on FD
Bd)o

(3) Frvilie 0 on FN

or what is the same

(4) le(EO) + q¢0 = f in Q
(5) Wy - uy =0 in @
(6) 99 = 0 on Tp» 4y, *v=0 on 'y




Here,  1is a bounded open region of R" with boundary FD U FN and

V 1is the outward directed normal to the boundary. To be precise we assume
f € LZ(Q)

and we seek solutions ¢0, to (4)-(6) in

uy
= ]y € B (@), ¥=0 on T}
and

= {vlve El(ﬂj, v*v=0 on FN}

The standard least squares method for (4)-(6) introduces finite

dimensional subspaces
U C V and S

and minimizes the residual in the following sense:

Least Squares Variational Principle

Find a ¢6 € Sg and a u € _Vg which minimizes

2 2
fQ Vw —v + IdiVih-!-qr,U(S-f! }

~~
~J
N’

over w(s € Sg and y_h Sﬂg.

Taking the first variation gives

(®)  f, (Tog-u) (WO-v") + (@ivia)+a0) (@iveM+ap’) = [ £(aive™+au’)

8

B¢ !g and all wd € SO. A fact that

a relation which holds for all ¥
will be needed in the next section is that (8) remains valid when lbd is

replaced with u'Jo and u

h replaced with Y4p3 i.e.,

) fo Wogmug) (WP + (diviyy)+av ) (@iveH+w®) = [ £laiv(eH+qp®).

-3-




We shall assume throughout the standard [5]-{6] approximation pro-
perties for the finite dimensional spaces Zg, Sg in terms of the Sobolev

norms H . ”r on Hr(Q). In particular, we shall need the following:

Approximation property

There are integers k > 1 and £ > 1, parameters 0 < h < hy and 0 << (So

and finite dimensional spaces
("} 0<h<n {S(S} 0<8<8
—0 0 ’ 0

for which the following holds: for all u € H @) N KO and ¢ € Soﬂ 1Y)

there are Qhe L/_g and &6 € Sg such that

A

c, B lull,

(10) H E—gh “t A

[

2 -t
(11) Il 6=, llt Cy & 7l ¢>IIQ

for t =0 and t =1 where CA is a constant independent of h, §, u and

The remaining assumption used in the theory is the Grid Decomposition
Property alluded to in the introduction and discussed in detail in [1]. A

precise statement of this property is as follows:

Grid Decomposition Property

h . . h
For each v, € V, there exists w, and z in Vg such that

with div gy = 0 and




and such that

thllo < ¢l div v |

for some positive constant C_ independent of h and Xh.

G

In the next section, it will be proved that the L2 error

(12) € = ¢O - bs

in the least squares approximation is the best possible. This result
generalizes the work of Jesperson [7] who proved it for Laplace's equation.

Jesperson was unable to obtain optimal estimates for

(13) e=uy-u

and as we shall show in the third paper in this series through numerical
experiments there is, in general, a loss of accuracy. However, with the
Grid Decomposition Property we are also able to obtain optimal rates for

(13).

III. Error Analysis

The starting point for an analysis of least squares methods is typical-
ly the observation that the solution {¢6’Eh} of the discrete problem is
a best approximation to {¢0,go} in a suitable norm. In our context this

norm arises from the bilinear form

(1) B((¢,w), W, ) = [o (V4-u) = (W-v) + (div(u)+qd) (div(v)+q¥




and is given by

) @l = B, @,u? .

Letting €,e denote the errors [(12) and (13), section 2] we observe that

[(8) and (9), section 2] implies the error {E{E} is orthogonal to

Sg X ﬂg in the form B(*,*); i.e.,
(3) B((c,e),0,v™) = 0 ail @°,9") € 85 x 1

It follows that (V) ,u ) 1is a best approximation to Wgruy) in |

That is, we have the following result

Lermma 1. For all (wd,zh) € Sg x ﬂg
S h
(4) e, lll < Il dg=¥~s ug=v I

Observe that (4, and the approximation property in section 2 can be
combined to give an error estimate in the norm ||| ° H|. Indeed, it
follows immediately from (1) and the fact that q 1is a bounded function
that B(-,* is a bounded form on Hl(Q) X E}(Q), and without a loss of

generality we may assume

5) 3o, W | < Lo+ ullp v+ Hulip
Thus

) ol < Holly+lal,

and so

7 Il s o™ o, +n <t | ve )l
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This error estimate is not very important by itself since the reverse

of (6) 1is not valid, i.e.,

| is majorized by the norm | on

-y
Hl(Q) but is not equivalent to it. In fact, it is by no means clear that

(2)  even dominates the L, norm | - llo.
To obtain error estimates in more reasonable norms, we shall need to

exploit the solvability of the boundary value problem [(1)-(3), section 2].

More precisely, we shall need an a priori inequality of the form

(8) o llope < Cgllav + abll, t =0,1

24t

to hold for all ¢ € H™ "(Q) satisfying the boundary conditions

(9 =0 on T , VAR on T

[}
o

(1.e., @W,VY) € SO X yo).This will be the case for a fixed positive number
CE provided Q and 94 are sufficiently smooth [2].
This regularity property will enable us to establish optimal error

estimates for
lell, » lawel,
To obtain an estimate for
lelly

we shall need the Grid Decomposition Property discussed in section 2.




Lemma 2. If CA’ CE denote the constants in [(10)-(11), section 2] and

(8), then
(10) | dive + q I, s CuCp(n+d) [|[ (e,e) |||
Proof. We recall [2] that
(11) | div (g)+q€”_l < sup{fQ nldive +qel | || n ”l < 1}
n
Now for any n ¢ Hl(Q) with
Infl <12
1
we solve
AE +q6 =n in Q
(12)
£=0 on Tps €+ v=0 on Ty
or what is the same,
p=VE ~on Q
(13 div(p) + q& = n on Q

£€=0 on T PpeyVv=0 on T .
Regularity gives

(14) bolly <lely ccglinll, <cg




Observe since p - V& = o,

[o nldive) + qe] [oldivp + q€lldive + qe]

[}

B((e,e),(&,p))

Use of the orthogonality property (3) and (6) leads to

(15) |fq nldiv@+acl| = [B((e,0),(5-E5, 25 )]

| A

Il el Nl e-€g.2-B) ]

F A

ol el + 1l pp. Il )
I Il 5”1 By

~

~ h
This inequality is valid for any £ ¢ Sg and P €-ZO’ and in

particular we choose the latter so that

2

le-E|l <c, 621 < ¢, c.8
sl < , = Gt

A

”P'Eh”l b CAh “2”2 b CA CEh

Our estimate (10) now follows by taking the sup in (15) with || n “l < 1.

-

Lemma 3. In the same context as Lemma 2 we have

(16) el = cycgs i lll + gl all +1) || div(e)+ee|
L= -



Proof. We solve the boundary value problem

[]
m
e
=]
e

(17) An + qn

n=0 on T Yn*v=0 on ..

for n. Regularity gives

(18) Inll, <cglhelly
In addition,
(19) le I3 = fyen+an)
Integrating by parts we have
[q ean = [p eVney = [y VesUn

which because of the boundary conditions reduces (19) to
e (12 = [ {-Ye-Tn + qen}
0 Q
But observe that

B((c,e),(n,0)) = [o{(Ve-e)+Vn + (div(@+qe)qn}

Integrating by parts once more we have

[ e = [ ewwn - [ div(e)n = - [ div(en
Q Q-

-10-




The last three equalities combine to give

le 13 = [ @D Give e - 3((e,0), (.0
which with the orthogonality property (3) becomes
(20) le 2 = [ @D @ive+ gon - B((e,), (1-75,0))

~ 6
The function Ng € S-0 can be chosen so that

Inig | 68 inil s eyggs el

Since
|/ (a¥l)(dive+ qedn | < (Jlq || + 1) [ div@+qell || n]
9] Lo -1 1

b

scelall +1) [[dive +qe || [l el
Lw -1 0

the estimate (16) .follows from (20).

Theorem 1. There is a constant C depending only on CA’CE’ and

” 1 ”Lw such that

(21) e llg < cas)ili¢e,a |l
and
(22) | dive ”—1 < () |l] Ce,e) |l

-11-



In particular,

L

A

lelly = cla“ts+n ] vopll + 8
k

Tt shllegll 3
L
with a similar bound for || div(_e_)”_1

Proof. The inequality (21) is a direct consequence of (10) and (16). The

inequality (22) follows from (10) and
lawe l, < lldavo+aell_y +laell,
with the observation that

lae lly < Naslly < Ball lell

We now turn to the L2 estimate for e. The key is the Grid Decomposition

Property and we use this to write

(23 oo Gy mw g

where

(24) div(z,) = 0 , fggh~gh =0 ,
and

(25) | zhll0 < Cglldiviy -G) H_l

Recall that for any v 6_20

laivy I_; = lixlly

-12-




Thus

A

" ."_Ihuo CS{“ diV(P_‘Qh) ”—l + ” diV(Eo'E_h) ”—1}

A

cs{ll g-ﬁhllo + || div slll} :

To complete the estimate we must get a similar bound on 2y To do this

we turn to the identity (3), which can be rewritten with wé =0 as

IQ{Eh'Xh+ div(gh)diV(xb)} + IQ(q+l)diV(Xh)¢’5

= fg{g'xh + div(g)div(zh)} + fQ (q+l)div(xh)d>

Putting xﬁ = and noting that div(gh) = 0, this becomes

z,

Jo ez = Jqu

Z4
Thus as 2y and w, are orthogonal
lg 2n' 2 = [oluy-8y) 2z, = [oumu) 2y

It follows that

(26)

In

Izl eyl

0

Combining (23), (25), and (26) we obtain the following theorem.

Theorem 2. If the Grid Decomposition Property holds, then

e llg < 2l |, ogCllaw el + [l atvigpll )

-13-




Thus

k,, k- -
(27) lelly, < ot a* sy || vo |l + (5" nesh | ol )
k

Note (27) implies that the error will be of order O(hk) if k=2
and § = 0(h). That is, the same order polynomials should be used for
both ¢ and u, and the associated mesh spacing should be comparable. In

practice this can be done by taking the same grids for both.

14—
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